Infra-red spectroscopy of size selected Au25, Au38 and Au144 ligand protected gold clusters.
نویسندگان
چکیده
Through the discovery of ligand protected metal clusters with cores of a precise number of atoms, the exploration of the third dimension of the periodic table for fundamental research and also for applications has become less remote. So far, the exact number of metal atoms in the core has been determined unambiguously only using mass spectrometry and single crystal X-ray diffraction. Gold clusters protected by 2-phenylethanethiol ligands, for instance, show distinct magic numbers that correspond to either electronic or geometric shell closings. For efficient control of their synthesis simple-to-use in situ spectroscopies are required. In the specific case of Au25(SCH2CH2Ph)18 clusters (1) we found a distinct shift of the aromatic C-H stretching band from 3030-3100 cm(-1) to below 3000 cm(-1) whose origin is discussed as an electronic interaction of the aromatic rings of the ligands with each other or with the gold core. This IR-feature is specific for Au25; the spectra of Au38(SCH2CH2Ph)24 (2) and Au144(SCH2CH2Ph)60 (3) clusters do not show this distinct shift and their IR-spectra in the C-H stretching regime are similar to that of the bare ligand. This significant change in the IR spectrum of Au25(SCH2CH2Ph)18 is not only of fundamental interest but also allows for in situ determination of the purity and monodispersity of the sample using FTIR spectroscopy during synthesis.
منابع مشابه
Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles
The evolution from the metallic (or plasmonic) to molecular state in metal nanoparticles constitutes a central question in nanoscience research because of its importance in revealing the origin of metallic bonding and offering fundamental insights into the birth of surface plasmon resonance. Previous research has not been able to probe the transition due to the unavailability of atomically prec...
متن کاملChemically induced magnetism in atomically precise gold clusters.
Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understandin...
متن کاملSynthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method.
It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster is precisely determined to be Au24(SC2...
متن کاملHierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates.
Unique thermal properties of metal clusters are believed to originate from the hierarchy of the bonding. However, an atomic-level understanding of how the bond stiffnesses are affected by the atomic packing of a metal cluster and the interfacial structure with the surrounding environment has not been attained to date. Here we elucidate the hierarchy in the bond stiffness in thiolate-protected, ...
متن کاملSimple and efficient separation of atomically precise noble metal clusters.
There is an urgent need for accessible purification and separation strategies of atomically precise metal clusters in order to promote the study of their fundamental properties. Although the separation of mixtures of atomically precise gold clusters Au25L18, where L are thiolates, has been demonstrated by advanced separation techniques, we present here the first separation of metal clusters by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 30 شماره
صفحات -
تاریخ انتشار 2013